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How good are global Newton methods. Part 1
A. A. Goldstein*

ABSTRACT: 1) Relying on a theorem of Nemerovsky and Yuden(1979) a lower bound
is given for the efficiency of global Newton methods over the class C(y, A) defined below.
2) The efficiency of Smale’s global Newton method in a simple setting with a non-singular,
Lipschitz-continuous Jacobian is considered. The efficiency is characterized by 2 param-
eters, the condition number Q and the smoothness S, defined below. The efficiency is
sensitive to S, and insensitive to Q.

KEYWORDS: Globat Newton methods, unconstrained optimization, computational com-

jf plexity

Global Newton methods are considered by some to be methods for minimizing a “strongly”

convex function f defined on a real Hilbert space E. Strongly convex means that { is twice
differentiable with a Hessian that is bounded from above and below. By C(u, A) we denote
the set of all strongly convex functions whose Hessian is bounded below by g and above

by A. The Hessian is invertible so that Newton’s method is well defined for every point in
E. Moreover a strong convex function achieves a minimum, where V f(z) = 0. However
Newton’s method may not converge to a root of Vf(z) = 0 from arbitrary points in E. a
This is a raison d'étre for the Global Newton methods. These methods, whose ingredients

contain Newton steps, generate sequences that converge for every strongly convex functions
and any starting point in E. The convergence rate is asymptotically superlinear. An 4
- early history of this subject may be found in Polak(1973), who cites contributions of
Goldstein(1965), Pshenichnyi(1970), and Robinson(1972). More recent work is due to
Bertsekas(1982), Dunn(1980), Hughes and Dunn(1984), and others. All of these results
give estimated asymptotic rates of convergence. Global Newton methods for finding roots
go back to at least 1934. They are related to continuation methods. An early history
= and discussion may be found in Ortega and Rheinboldt(1970,p235), who credit the basic
idea to Lahaye(1934,1948). Current references may be found in Smale(1986-2). In general

we regard a global Newton method as any algorithm incorporating Newton steps that .
that generates a finite sequence terminating in an approximate root. This is a point from
which thc ordinary Newton's method will converge. Other algorithms are available that
terminate in an approximate root. The efficicncy or iteration count of 2 such algorithms
will be compared to a global Newton method. The word “algorithm” as used in this paper
should be taken with “a grain of salt”. We assume information that is not given with real
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problems. Our excuse for doing this is that we hope thereby to gain insight and motivation

for the future construction of good algorithms.

The efficiency of a Global Newton method was probably first analyzed by Kung(1976).
using natural assumptions that imply a non-vanishing Jacobiau. It appears that the next
such result is due to Smale(1986-2) who established a global Newton method in the general
setting of an analytic mapping between Banach spaces, both real or both complex. We
revisit this problem below. OQur assumptions are close to Kung’s but our algorithm follows
Smale. The first part of this paper wi show that the class of strongly convex functions
and thus any more generalized classes i..at include the strongly convex functions are not a
suitable setting for Newton's method: hence, also not suitable for global Newton methods.

Unfortunately. this is the setting for the asymptotic convergence proofs mentioned above.

Consider the class C'(u.A) having the following definition. Let F be a continuously dif-
ferentiable map from a separable real Hilbert space H into itself. The inner product in H
will be dencted by [, ]. Let D(x) denote the Frechet derivative of F at x. By C'(y. \)
we denote the set of all maps F for which u||h|] < || D(z)h|| < Aljh]| for all h. x € H.
with £ > 0. Let Q = % Assume that the linear operator D(x) has an inverse. We
shall show that no global Newton method (or any other algorithm) can do better than
linear convergence at a certain determined rate over every member of the above class. Any
algorithm that can achieve this rate is called an optimal algorithm. For the special casce
of C{u.A) a simple algorithm due to Nesterov (1983)is optimal to within a multiplicative
constant. The convergence rate is linear. Nesterov's algorithm does not require inversions:
-1t is similar to the gradient method. Any application of Newton's method requires the
computation of an inverse operator or the solving a system of lincar equations. If the
dimension of H is small we usually are willing to pay the price of solving equations to gain
the possibility of quadratic convergeuce. The convergence estimates for the global Newton
method in the space CT(u. A. L) that is a subset of CT(p. A) with D(x) satisfyving a uniforn
Lipschitz constant L show arbitrarily slow convergence for sufficiently large values of L.

For the special case when D(x) is everywherc self-adjoint we exhibit a gradient algorithm

whose efficiency is insensitive to L . For this case the estimate for the gradient method 1= |

superior to that of the global Newton method when L is sufficiently large. However the

gradient method is scusitive to Q. while the global Newton method is not. Thus for fixed | .

L and large enough values of Q the situation is reversed. T

Qoy
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REMARK 1. a). If Fis € C'(u, A) then any stationary point of ||F(z)||? is a root of F.

PROOF Let f(x) = [F(x),F(x)]. The differential f'(x,h) = 2[F(x).D(x)h]. where D(x)h
= F'(x,h). Let h = D™!(z)F(z). If x is stationary then f'(z,h) = 0 = 2[F(x), F(x)].
Whence F(x) = 0.

b).EXISTENCE. In view of 1. above, if in addition f has compact level sets then F has

roots.

Let C(u, ) denote the set of twice differentiable c.. sex functions with
ullRl? < f(x ko h) < NJRYP

for all x and h € H, and some positive ¢ < A. The class C(u, A) is called a set of “strongly
convex  functions. The number @ = A/u is called the condition number.

ALGORITHMS By an algorithm A(g) where g € C(y, A) we mean a recurrence relation
that calculates rx4; using some of the values of g. ¢' and ¢" at x,. s=0.1.2....k. with 2
arbitrarily given. A(g) is a special case of a “local method"defined by Nemerovsky and
Yuden. 1981. By an algorithm B(F) defined on C'(u. ). we mean a recurrence relation
that calculates r4y; using some of the values of F and F' at z,. 0 < s < k. with ry
arbitrarily given. B(F) is also an instance of a local method. We shall assume that all

global Newton methods are B(F) algorithms.

Let Cs(p. A) denote a subset of C!(y. A) for which D(x) is self-adjoint with spectral bounds
p and A for all x € H. For F € Cy(u. A) we can associate a “potential™ function f (Vainberg
1955) such that Vf(z) = F(x) for all x in H. (Actually. an equivalence class of functions.
differing from each other by a constant). Also for every f € C(ji. A) there corresponds a
F € Cs(p2.A). The function f is weakly lower semi-continuous and the level sets of f are
weakly sequentially compact. This, and the strong convexity of f implies that there exists

a unique minimizer for f, say z.

When anyv formula below is followed by the word “steps” we mean that the formula i1s to
3 A p

be rounded up to the nearest integer. We rely on the following claim.

THEOREM 1. )NEMEROVSKY-YUDEN(1979) Given a positive € < 1, a fixed but arhi-
trary point ro € H and an algorithim A(f), there exists a function f € C(y. A) such that
if zx generated by A(f) reduces ( f(zx) — f(z)) to less than e( f(xq) — f(z)) then k exceeds

the number: )

c[min(n. \/(_))/(ln min(n, \/(—2))] In - = Rin % steps

4




Here c is a positive constant, Q is > 2, and z = argmin {.

REMARK 2. For n and Q sufficiently large and € sufficiently small the above bound may

be increased to:
1
c\/a In -
€

Given a positive € < 1 and any function f € C(g, A) there is an algorithm A that yields
flz) — f(z) < (f(x0) — f(z))e whenever k exceeds 4,/Q/In2)"! Ine~! = R' Ine~!. This
algorithm is due to Nesterov(1983). It is essentially optir i:d, and can only be improved by
a decrease in the constant factor 4/1n2. Stated otherwise, the algorithm A applied to any
function f € C'(u. A) generates a sequence ry that satisfies (f(zx)— f(2))/(f(zo)~ f(z)) <
((e_“/R'))k. for 1 <k <.

The algorithm A (that will be called GRADI below) may also be taken to be the gradient
method with step length 1/A . This algorithm requires no information about the valucs
of the function f. while Nesterov’s does. Observe that the linearly converging sequence
(e~(H/RIk 1 =1,2.3, ... is for each k a lower bound for the relative decrease of some
function f in C(u.)\) at rj . while the sequence (e~/F))* is an upper bound for the

relative decrease for any function in C(u.A). For the gradient method above the sequence
is (e ~(1/ )k,

This prompts us to call the class C'(yu. A) “esslinearly convergent™. that is every function in
the class can be made to converge no slower than linearly, but sup {(f(x) = f(2))/(f(2o)—
fz)): f e Cp.\)}. k=1.23.....cannot converge faster than lineasly. For brevity we shall
refer to this latter property as “sublinearly convergent™. We now observe that the class

Co(pe. X) 1s also esslinearly convergent.

LEMMA 1 Given F € C,(u. A). let f denote any potential function for F. Let z = argmin

f. The following inequalities obtain:

(2Q)[(f(x) = F(2)/(flzo) ~ FN]'? < ||F(2)||/|| F(xo)l]
< 2Q[(flx) = f(=)/(flzo) = N2 (4)

Moreover. 1f

flr)— f(z) < (f(rg) - f(z))/‘iQ3 then ||F(x)|] < eljF{ao)li (B)




PROOF By the strong convexity of f and Taylor’s theorem we get:

>

Ko =2 < flo) - ) < Sl =2 (@

[ 3%

By the generalized mean value theorem and the convexity of f we get:
[F(2)ll < Mz -zl (b)

and

fle)- () <N F)lillz ==zl ()
By (a) and (b) we have:

|1 E(x)]] () — £(2)) 1/2
I F(xo)]| ~ )‘[ (|| F(z0)|2 ] (d)

By (a) and (c) we get
IF@I 2 Slle =21 (o)

and

|F(x) > (f(x) = fEDY2 ()

=

To prove (B) we find that using the hypotheses of (B) together with (d) that

ol

2¢2(f(z) — f(z))]’/‘
4puQ3 || F(x)|1?

| F(x)]
F(xo)l]

s

Using (e) we find that the right hand side is less than or equal to

A[ 22 (f(xo) = () }
4;1Q3/12||To | /4

Now using (a) the above expression is less than or equal to e.

We now turn to the proof of (A). Using (f) and (d) we find that

2 ||F(2)] > (fz) = f(z)/? S <f(1)_f(:) \1/2 i
pllF(x)l = |FGo)ll =)/

. This proves the left side of (A). The right hand inequality is proved similarly. using

and (f).

LEMMA 2 The class C4( p1. A) is esslinear.

idy




PROOF Let f be a potential function corresponding to F. Every algorithm B(F) is now
also an algorithm A(f). Every function F' € C,(u, A) is the gradient of some f € C(u, A).
Hence for some F , |[F(z4)||/||F(xo)l| converges more slowly than (e~(*/R))%/2/2Q. Now
take for the algorithm B the gradient algorithm mentioned above. Again by LEMMA 1

every function F will converge under B with at least a linear rate.

Since Cy(p, M) is a subset of C'(u, ), then for some F € C(g, ), [|F(zi)||/ |F(x0)|]
converges more slowly than (e ~(1/8))¥/2 /2Q. Now for B(F) we take the algorithm GRAD?

below. This algorithm converges linearly. Whence we have
THEOREM! 2. The class C'(u, A) is sublinearly convergent.

We now restrict the class C'(u, ) to enlarge the possibility of faster convergence. Let
C'(u. A\, L) denote a map Fe C*(u, A) for which {|D(z) — D(y)|| < L[z — y||, for all x.v €

H. The following well- known theorem is adjusted for our present setting.

THEOREM 3 KANTOROVICH(1948) Take o € H.. Let 3(2¢) = (D' (ay))] and
n(xo) = (D~ Hap))F(xp)l]. Assume that ||D(r) — D(y)|| < Alzo)||x — y|| for all pairs x.v
in the ball Birg) = {z € H : |jr — x¢)]] £ 2n(z0)}. If n{z9)3(20)A(70) = hl(zgy) < 1/2.
then F has a root z such that z is in the ball B(xg), the Newtonian iterates x; defined by
41 =1;— DYz, )F(ry) liein B(zg), and |lz; — z|| < 21=1(2h(2))¥ “In(z0).

A convenient terminology similar to Smale’s is that under the above circumstances xy is

an “approximate root .
In what follows we shall take h(z¢) = 1/4.

REMARK 3. The condition for an approximate root. n{ay). 3¢ )\(ro) < 1/4 has the

equivalent condition for an approximate root as:

[Floo)l! < alzg) = 1/[43(x0)\(2o)||D ™ (z6)Fl20)/ || F(20)]] ]I]

REMARK 4. We have for all x € H global estimates for n(zr). J(r). and A(x). Namely:
3(zr)<1/p. n(x) <||F(x)||/p and A(x) < L. From these estimates we get:

alr) > /4l = a
If ||F(z)! < a then r1s an approrimatc root. and

n{r) < p/4L.

i




In many problems a is so small that the desired accuracy tolerance is achieved before an
approximate root is achieved. Thus the efficiency of a global Newton method 1n reaching
an approximate root is a crucial question. We now turn to our version of Smale’s algorithm
which we shall denote by “SGN”. In what follows a(z;) will be denoted by a;.

REMARK 5. In what follows the constants u. A, and L need not be finite over the entire
space H, but rather on the set S = {r € H : ||F(x)|| < ||F(z0)]}-

LEMMA 3. A wme F € CY(u.\) and zy is arbitrarily given in H. If ||F(2¢)l] € ay then

Io is an apprc¢ nate root. If not we define a sequence z¢, t;. x;. t2...... mductively as
follows. Given r; set
NE(z:)|l = ai
i1 = — = — (a)
' 1 E(x )l

Choose z,4, to satisfy
NE(xig1) = tiga F(2)]l < a,/2 (h)

Then
HF(Ti+1 )H S F(xo)ll = (i + 1)a,2

where o Is defined as in Remark 4.

PROOF. We show first that z,4; can be chosen to satisfy (b). Let G(0) = Flr) -
t,s1F(x;). Since G,{x;) = a,. 7, is an approximate root for G,. because F' = G'. A tew
Newton steps (we count them below) suffices to obtain x,41 such that |G, (2l < a,/2.
Thus (b) can be satisfied. Using the triangle inequality on (a) together with (h) we
get that [|F(z,41)]] < [[F(e)l] — a,/2. Whence ||F(x,41)]] < [[F(ag)f - %S;:“q, <
F(zy) = (14 1)a/2. Now chooso 1 so that ||[F(z,41)]l <a

CLAIM 1 Let N be the least integer exceeding 2(||F(zo)|| —a)/a. Then for some < N. o,

is an approximate root of F.
We now estimate the number of Newton steps to move from r, to x,41.

LEMMA 4 Let {y,,} be a sequence of Newtonian iterates starting at y;o = v,. Let Gi(z,1 =
0. Then we can choose z,4; = y,x where K is the least integer > 1.4431In(1.443 In S() ..

PROOF We have seen that z; is an approximate zero for G, hence |y, — z,|l < %r ' i
Then
)*

2 < 1/(8Q)

|Gily,;) = Gii<i)|| £ AM{(yi; — 2] L Apl™ (

VAR

Now choose K so that AuL~ (%)2"’ < a/2. that is (%

8




REMARK 6. The above algorithm can be optimized by changing the right hand side of
inequality (b) in the recursion above to a/q with ¢ > 1. The formula for N becomes
(I F(ro)]] — alg/a) and K becomes 1.4331n(1.4331n 4¢Q). Now choose ¢ to minimize NI\,

LEMMA 5 Take F € C'(u, A, L) Assume that D(x) is self-adjoint for all x € H. The
gradient method previously mentioned below REMARK 2, called Algorithm A. that we
shall now call "GRAD1" will. starting at zo, generate an approximate root in K steps,
where K is the smallest integer > QIn [|| F(z)|[4QL/ u?]

PROOF The mapping G defined by G(y) =y — I'(y)/A has a fixed point z satisfving F(z)
= 0. It is a coutractor satisfving a Lipschitz condition ¢ = 1 — l/Q Gold +tein(1967. pps
15 and 24). Set G(r,) = 2,41 = Iy — F(z,)/A. Then ||F(r F(H) < Mlay, = =]l <
Aq™iro - oy li/(1 = q) = | F(xelq" /(1 = q). Now choese n so tlmt

|F(xre)llg™ < a(l —gq)
Using the inequality —lu/1 — p/A) > /A, one obtains the lemma.

We now consider a gradient method for thie non-symmetric case. We call this gradient

method GRAD?2.

ALGORITHN GRAD2 Take ¥ € Clypi. A L). &g € S and set f(x' = || F(x)]¢. Then T fir)
satisfies ||V fir) = ©fiy)] < Mijx = yll for all x and v in S. with M = 2(\* + [|[Fay 1 Ly,
Set olr) = f(o)NV Fa)/IIN fre)? . Given arbitrary rg in H set wpay = rp — ~ooisg i with
~o = % /2M. I k exceeds

(IF )L ) [Fiog)ii4L
2< y +Q) ( wi )

then g is an approximate root.

PROOF Adding and subtracting (F'(y)* F(r) we find that S f(x) = V() < 20\ +
IF() Dy [lr =yl and flo) = flr —s0(r)) == 2N flr).olr)] + + [N flr) - Vﬂﬂrwf
Here 1§ — zli < v Mol Then flo —qole)) < flr) -~ flr) + ~EM ot =0 N f
2F'(r))"F(r). and |[Vf(r)] 2 2|F(o)lp. Then f(zisr) < flaa)l =50 + 7 \1/4/1 =
flri)l — p? /M), Taking squaic roots we g(‘t that ||F(re))ll € [F(a)ll(1 = p2/270).
Finally. choose k so that ||F{rg)||(1 — p /7\[ < u?/4L.

Compuring the algorithms. Let
[ FroliL

/e

By claim 1 and lemma 4 the total number of steps of SGN 1

S =

9




SGN : 11.544(S — .25)In(1.443128Q).

GRAD?2 : 2(S5+ Q%) n4S

GRAD! : Qln(4SQ)

Notice that unlike GRAD1 and GRAD2, SGN is insensitive to the condition number O!
However SGN is sensitive to S. GRAD 1 is sensitive to Q but not to S. GRAD?2 is sensitive
to both of these factors. In the symmetric case for fixed Q, GRADI is quicker than SGN
wher. ||F(z¢)| grows sufficientiy large or if L/u® gets sufficiently large. On the other
hand for fixed S, SGN is quicker as Q grows sufficiently large. In the non-symmetric case
SGN is superior to GRAD2 with respect to the number of steps. When the cost per
step 1s included. the gradient methods become cheaper in the n-dimensional case when n
is sufficiently large. For each Newton step an nxn system of linear equations is solved.
costing O(n®) multiplications. While the corresponding GRAD?2 step involves a matrix
multiplication of an nxn and a nx1 matrix. or n” rwltiplications. and GRAD1 requires no
matrix operations.
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